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UNDERSTANDING INTER-REGIONAL DIFFERENCES IN
COVID-19 MORTALITY RATES

In this note, we present a model of deaths due to COVID-19 disease and
attempt to explain differences between geographic regions using a few critical
factors that are shaping policy decisions and scientific debates. Some of our
key findings are:

• There are material differences in the COVID-19 mortality rates between
countries and regions within the same country (the United Kingdom)

• We were unable to find any factors that explain a large proportion of
the variation in peak mortality rates

• In particular, the average age, prevalence of hospital beds and changes
in mobility – all of which are assumed to be critical for policy decisions –
are not statistically significant determinants of the mortality trajectory

• We find strong evidence for spatial clustering of peak mortality rates

The results lead us to question the validity of a phased approach to relaxing
lockdowns. According to most governments, an initial strict lockdown was
necessary as a temporary means to curb the spread of the SARS-CoV-2 virus
and prepare healthcare facilities. It remains debatable as to how these initial
restrictions should be relaxed. Our finding that differences in mobility do not
explain the large variability in mortality rates suggests that a gradual lift-
ing of lockdown restrictions will not necessarily mitigate COVID-19-related
deaths.

Given the spatial clustering of peak mortality and the fact that none of our
variables are able to adequately explain the differences in observed mortality,
it remains important to identify the relevant drivers of COVID-19 mortality
in order to make effective policy decisions and save lives.

DETAILED FINDINGS

Country-Level Analysis

We began by modelling the daily COVID-19 death trajectories in 54 coun-
tries. Countries were included in the analysis if they exceeded 0.1 deaths per
million for at least 50 days as at 21 May 2020. To align the curves, time was
measured as the number of days since 0.1 deaths per million.

The variation in the maximum cumulative death rate between countries is
extraordinary, ranging from 0.8 deaths per million in Thailand through to
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789.5 deaths per million in Belgium (the mortality curves for both of these
countries appear to be nearing their plateaus). The median deaths per million
in our sample was 33.4 with an interquartile range of 11.2 to 94.7 (see Figure
1).
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Figure 1: Observed mortality curves for each country.

We considered real GDP, hospital beds per 100,000 people, the average obe-
sity rate, the Oxford lockdown stringency index, population density and a
measure of density clustering as potential predictors. Of these, only GDP
appeared to improve the fit of the model substantively, explaining 36% of
the variation in growth rates between countries. In particular, we found that
the mortality curves tend to reach their plateaus faster in wealthier countries
than in poorer ones. Importantly though, none of the covariates we consid-
ered explained a significant proportion of the variation in the peak deaths
per million. The fits of the best model are shown in Figure 2.
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Countries with the Highest Peak Mortality Rates

Days since 0.1 Cumulative Deaths per Million
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Countries with the Lowest Peak Mortality Rates
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Figure 2: Observed (navy dots) and predicted (red lines) mortality curves
for countries with the highest (top figure) and lowest (bottom figure) peak
mortality rates in our sample.
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UK Analysis

To control for differences between countries (for example, the quality of
health care and the stringency of lockdown measures), we also analysed the
weekly COVID-19 mortality data for 292 local authorities in England and
Wales. Local authorities, which we will henceforth refer to as counties, were
included in the analysis if they had exceeded 0.1 cumulative deaths per mil-
lion for at least 8 weeks as at 20 May 2020.

Again, we observed a huge amount of variation in peak deaths, ranging from
75.5 deaths per million in Hastings to 1601.2 in Hertsmere (see Figure 3).
While we did expect more variation due to the smaller population sizes within
each UK county, we thought that eliminating country-level differences would
at least offset this.
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Figure 3: Observed mortality curves for UK counties.

We attempted to explain the observed variation with the following set of
county-level covariates: average age, income, population density, number of
people per hospital, number of surrounding counties within a fixed radius
and the week number when each county first observed ≥ 0.1 deaths per
million (did this happen earlier or later in the pandemic?). We also included
Google’s community mobility data, which tracks changes in visits to places
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such as grocery stores and parks. These data were also available at county
level.

We found that only the number of surrounding counties and the week num-
ber when deaths per million first exceeded 0.1 were significant. In particular,
the growth rate of cumulative deaths was significantly higher for counties
that had a larger number of nearby counties, explaining 27.7% of this vari-
ation. For counties that passed the 0.1 deaths per million threshold later in
the pandemic, the mortality curves rise up sooner and to significantly lower
asymptotes. Including the week number of ≥ 0.1 deaths per million explains
62.6% of the variation in the placement of the curve along the time axis, but
only 8% of the variation in peak deaths between counties. The observed and
predicted mortality curves are shown in Figure 4.

It is interesting that differences in mobility between UK counties did not
explain the observed variation in mortality rates. The average change in
workplace mobility from mid-March to the end of May was −56%, ranging
from −71% to −45%. For transit stations, the range was even wider from
−83% to −30%, with an average change of −55%. Therefore, we can only
say that for these observed ranges, there appears to be no impact on the
mortality experience.

An example is the Hertfordshire area, where the Hertsmere district has the
worst COVID-19 mortality rate in the UK, yet the mobility of residents
was lower than average at −61% and −67% for workplaces and transit sta-
tions, respectively. In contrast, North East Lincolnshire had one of the lowest
COVID-19 mortality rates in the UK, but above average workplace and tran-
sit station mobility changes of −49% and −50%, respectively.

Due to software limitations, the analyses above did not account for spatial
correlation in mortality between UK counties or countries. Indeed, we found
significant evidence of spatial clustering in the predicted peak deaths at both
the country and UK county levels (Moran’s I, p-value ≈ 0 for both analy-
ses). Looking at the UK heatmaps in Figure 5, there are clear clusters of
neighbouring counties with high COVID-19 death rates, even within London.
Interestingly, neighbouring counties can also have dramatically different peak
death rates.

The London counties present quite an intriguing case study. This is because
the population sizes are broadly similar, and the number of hospitals relative
to the population in each county is also broadly similar. However, we note
the extreme differences between the Harrow and Brent counties compared to
the adjacent areas and the fact that the central counties have much lower
mortality rates. A variable that would be of interest is the ethnic profiles of
the various counties and we found that differences in the ethnic compositions
of the counties also did not explain the differences in mortality experience in
the case of London. We did not obtain the data for ethnicities for the rest of
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UK Counties with the Highest Peak Mortality Rates

Weeks since 0.1 Cumulative Deaths per Million
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UK Counties with the Lowest Peak Mortality Rates

Weeks since 0.1 Cumulative Deaths per Million
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Figure 4: Observed (navy dots) and predicted (red lines) mortality curves
for countries with the highest (top figure) and lowest (bottom figure) peak
mortality rates in our sample.
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England and Wales at a county level.

We also explored whether the spatial clustering of COVID-19 mortality that
we observed at a country level might be explained by differences in the aver-
age air temperature. However, temperature too turned out to be an insignif-
icant predictor of mortality.

Figure 5: Peak deaths per million in England and Wales (top) and London
(bottom). All counties were included, regardless of whether peak mortality
was ≥ 0.1 deaths per million.
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DISCUSSION

Are Phased Lockdowns Warranted?

We have shown that differences in mobility levels do not appear to explain
the variability in the COVID-19 mortality experience of different regions.
Moreover, in the UK analysis, we observed that counties with very low mo-
bility can have extremely high peak mortality rates and vice versa. Changing
the restrictions on mobility, at least within the ranges we have observed, is
therefore unlikely to have the desired effect on mortality. This raises doubts
as to the efficacy of a phased lockdown approach. Assuming that reducing
mobility from normal levels does reduce mortality risk, it is also debatable
as to whether such reductions in mobility should be achieved by coercion.

To be clear, we are not saying that lockdowns and social distancing do not
work. However, we cannot argue that the phased adoption of these measures
has any impact on risk mitigation. This is an important consideration for
policy makers who must carefully balance the benefits of a phased lockdown
strategy with the economic harm caused by such an intervention.

It is also worth noting that our findings cannot be used on their own to argue
the case for no lockdowns. In the absence of a strict lockdown, the mortality
rates of all regions may very well have been higher. Indeed, we have not
studied regions where mobility remained normal during the COVID-19 pan-
demic. Without conducting such an analysis, we cannot comment on the
merit of lockdowns compared to no lockdowns.

Other Important Considerations

We acknowledge that there are many other important explanatory variables
that we did not consider in our analyses. Of note is the prevalence of co-
morbidities, which are widely believed to increase mortality risk. It is inter-
esting that hospital availability and the average age of the population – both
of which are commonly assumed to influence mortality rates – are not able to
explain mortality differences between regions in both our country-level and
UK analyses. Indeed, it is clear from the case fatality ratios that age is an
important factor, with older people within a region being disproportionately
affected. We note, however, that the case fatality ratio in countries like Italy
(high peak mortality) are materially higher at each age compared to countries
like South Korea (low peak mortality) (see Figure 6).

We must also point out that the population of COVID-19 cases in South
Korea was much younger than that of Italy. Therefore, an adjustment to
the age distribution by referencing the infected population may yield more
significant results when it comes to explaining the differing mortalities across
regions. This would be a useful area for future research. Such an analysis
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Figure 6: Age-specific case fatality ratios (top figure) and deaths per million
(bottom figure) for Italy (blue) and South Korea (red).
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would, however, need to take into account biases in the criteria for testing
and differing test methods across populations. This is also why part of this
investigation focused on counties within the UK, where we assume that the
testing methodology and quality and access to healthcare is fairly consistent.
Note, however, that adjusting the age distribution by referencing the age of
the infected population would not explain why different populations have dif-
fering distributions of infection by age. This is also important to understand
if the aim of a policy is to mitigate mortality risk.

One issue with disease-specific mortality data is that it is not always clear
whether a person died from the disease or with the disease, and the guide-
lines for this assessment differ between regions and over time. For example,
deaths that were previously assigned to strokes and heart attacks in indi-
viduals who later tested positive for COVID-19 are now being assigned to
COVID-19 after it was discovered that the disease causes small blood clots
that lead to these conditions. One potential solution to the inconsistent re-
porting of COVID-19-related deaths is to study the mortality in excess of
what would be expected in a normal year. We hope to pursue this in our
future research.

APPENDIX: METHODOLOGY

We modelled the cumulative deaths per million yi(t) in region i at time t
with a Gompertz growth curve of the form

yi(t) = Ai exp{−Kie
−Rit}+ εi(t),

where, for region i, Ai > 0 is the asymptote or peak deaths, Ki controls the
displacement along the time axis, and Ri > 0 controls the growth rate of
deaths per million. The random departures from the Gompertz curve, εi(t),
are assumed to be independent and Gaussian with a constant variance σ2.
Rather than specify a separate set of parameters for each region, we adopt
a mixed-effects approach and model each parameter as the sum of a fixed
effect and a random effect drawn from a centred Gaussian distribution with
covariance matrix Σ; that is,

Ai = A+ ai

Ki = K + ki

Ri = R + ri

and  ai
ki
ri

 ∼ N (~0,Σ).
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The advantage of this formulation is that it only has 10 parameters (the fixed
effects A, K and R, and the variance and covariance parameters σ2 and Σ)
and these do not increase with the number of regions.

In this model, the regional variation in peak deaths, for example, is captured
by the Σ11 entry in the random effect covariance matrix. Our objective is to
determine if any covariates can explain this variation. We test this by adding
covariates X1, . . . , Xp to the parameter equation

Ai = A+ β1X1 + · · ·+ βpXp + ai

and determining whether there is a significant reduction in the variance of
ai relative to that of the model without covariates. This can be done for any
or all of the three fixed effect parameters. We used the Bayesian information
criterion (BIC) to determine which covariates offer a significant improvement
in model fit.
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